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ABSTRACT
The dermatological concept of the Ugly-Duckling Sign
(UDS) emphasizes the importance of comparing skin lesions
within the same patient for enhanced diagnostic accuracy in
melanoma detection, stating that atypical lesions are more
likely to be cancers. However this concept is still underuti-
lized in research, as most work on melanoma detection rely on
classification ConvNets which lack the capacity to compare
images together. Addressing this research gap, we introduce
ReSeT (Residual Set-Transformer), a framework designed
to compare skin lesions within patients during prediction.
ReSeT comprises an encoder that takes individual images as
input to generate embeddings, and a Set-Transformer with
a residual prediction layer that compares these embeddings
while predicting. We demonstrate that our architecture ReSeT
significantly enhances performance compared to ConvNets
and we highlighting the necessity of residual connections in
the context of multi-output Transformers. We also observe
that self-supervised encoders are able to generate embeddings
of comparable quality to those of supervised models, showing
their robustness and impact on image comparison tasks.

Index Terms— Skin lesions, Set-Transformers, Self-
supervised learning, Machine Learning, Ugly-Duckling Sign

1. INTRODUCTION

Melanoma is a prevalent and potentially life-threatening skin
cancer occurring worldwide. The first step toward its diag-
nosis is to analyze the skin’s surface and identify potentially
dangerous skin lesions. Initially performed by clinicians, an
increasing body of research has focused on automating di-
agnosis using artificial intelligence. While most studies rely
on conventional ConvNets, which have already demonstrated
good results [1], they often lack incorporation of crucial der-
matological concepts. The integration of these concepts into
automated diagnostic models shows promise in improving
both diagnostic performance and the clinical acceptability
of such models in clinical settings. Within the extensive
landscape of dermatological concepts documented in medical
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literature, the Ugly-Duckling Sign (UDS) [2] emerges as a
distinctive and insightful perspective. UDS posits that among
all the skin lesions on a patient’s skin, those that appear the
most different from the surrounding lesions are more likely
to be indicative of malignancy. While it represents a promis-
ing research direction, there are still few works related to
this concept [3, 4, 5]. Integrating patient-level comparisons
could significantly enhance diagnostic accuracy and the depth
of clinical insights when deploying computer-aided models
within clinical settings. Classical Transformers [6], while
showing promising initial results [7], rely heavily on token
order for predictions and may not be optimized for data or-
ganized as sets. In our patient-focused context, treating skin
lesions within a patient as a set, rather than an ordered se-
quence, might prove beneficial for the classification task and
the efficiency of our models. Contrary to previous work [7],
which leverages a wide range of techniques to compare skin
lesions, we aimed for our architecture to remain simple and
adaptable, focusing solely on the task of classifying images
while minimizing computing resources. Following this idea,
our framework (illustrated in Figure 1) rely on an encoder in
conjunction with a Set-Transformer [8] to facilitate diagnos-
tic predictions. The encoder, either trainable in a supervised
or self-supervised manner, generates embeddings of the im-
ages, which can be used for various subsequent tasks. In our
case, we focus on the classification task in order to detect
melanomas. We emphasize the use of self-supervised models
as encoder, as these models, by abstaining from the use of
ground truth labels, ensure that the extracted embeddings
remain unbiased towards the original classification task. This
is particularly crucial when comparing lesions to obtain a
more diverse representation of the images, with embeddings
representing features that would not necessarily be learnt
by a supervised model. Subsequently, a Set-Transformer is
employed to compare these embeddings and drive diagnostic
predictions. Their permutation-equivariant design ensures
that predictions remain consistent irrespective of lesion order,
which is the case in our task.



Fig. 1. Framework Diagram. Images are processed individually by the encoder, whereas the Set-Transformer operates
collectively on all vectors for comparison. The Set-Transformer’s outputs are then concatenated with the input vectors during
predictions.

2. METHOD

2.1. Dataset

The dataset employed in this study is the ISIC 2020 dataset
[9], one of the most important dataset on skin lesions. It
contains a substantial collection of skin lesion images that
uniquely includes patient identifiers. Images come from
multiple dermatology departments and have been acquired
through the use of epiluminescence microscopy. With over
33,000 annotated images, it is one of the most extensive
dataset for skin lesion analysis. Notably, the patient identi-
fiers enable us to link lesions from the same patient, a critical
aspect of our approach. While being a very rich dataset,
the data are heavily imbalanced, with nevus representing
more than 98% of the images, and melanoma being part of
only 2% of the images (see Table 1). To deal with such
imbalance, our supervised models (classification CNN and
Set-Transformers) have a weight in favour of melanoma cor-
responding to 0.98, and a weight 0.02 for nevus class. In
preparing the dataset, we conducted several data preprocess-
ing steps. Apart from resizing all images to a uniform size
of 300 × 300 pixels, we also applied data normalization to
ensure consistent image quality and format. Additionally, we
employed data augmentation techniques depending on the
architecture used. We kept the default techniques for each
self-supervised model, while the CNN used basics transfor-
mations such as random resized crops and random flips. The
dataset was randomly divided into three subsets: training,
validation, and test set. The training set encompasses 75%
of the patients, the validation and test sets each contain 15%
of the patients, providing a robust basis for model evaluation
and generalization testing. It is worth highlighting that our
dataset splitting was performed at the patient level rather than

Train set Val set Test set
Number of patient 1439 308 309

Nevus 23081 5093 4368
Melanoma 409 105 70

Table 1. Distribution of images in the different sets.

directly at the image level. This approach is essential as each
training step requires access to all images from the same
patient.

2.2. ReSeT

ReSeT consists of two primary modules: an encoder and
a Set-Transformer, trained independently. Firstly, the en-
coder is trained to derive image embeddings, essential for
subsequent operations within the Set-Transformer. Then the
Set-Transformer is trained on the classification task, taking
as input the generated embeddings. We use the same train,
validation, and test sets as the encoder. The Set-Transformer
produces an output for each input, mirroring the patient’s
lesion count, with each output corresponding to the related
input image. Additionally, we augment the original Set-
Transformer architecture by introducing a final residual layer
(skip-connection) that links the embeddings to the corre-
sponding output. This modification involves concatenating
these outputs with their respective input vectors, rather than
relying solely on the Set-Transformer’s outputs. Finally, a
single dense layer is used to make the predictions. Residual
layers ensure that the network’s final layer assimilates both
the original vector and contextual information from the Set-
Transformer. While the encoder learns to map images in the
latent space, the Set-Transformer learns to make predictions
not only using the individual images but also leveraging addi-



tional information related to all other lesions. This approach
allows the model to either utilize contextual information
or simply rely on the image embedding, depending on the
patient, as some patients may not have many skin lesions.
Moreover, this method addresses concerns regarding vanish-
ing gradients while maintaining a balance between individual
image traits and collective set features in predictions.

2.3. Encoder

We utilized ResNet-50 [10] as the base model for the archi-
tectures responsible for encoding images. Since the original
architecture offer a latent space with more than 1,000 features,
which is too high in our context, we added a dense layer with
an output size of 200, aiming for concise, insightful embed-
dings rather than high-dimensional vectors. In our supervised
training setup, we trained the ResNet-50 model on a classi-
fication task distinguishing between melanoma and nevus on
200 epochs, using the Adam optimizer, a learning rate set at
0.001, and a batch size of 64. The model selection was based
on the Area Under the ROC Curve (AUC) from the validation
set. Post-training, we extracted image embeddings from the
penultimate layer of size 200. We also explored our frame-
work’s performance by employing self-supervised models as
encoders. Leveraging unlabeled data through self-supervised
learning enables the capture of underlying data structures be-
yond mere classification labels. Most of these self-supervised
allow the generation of a latent space where proximity indi-
cates image similarity, which offer advantages in classifica-
tion tasks as well as visualization tasks in clinical settings. We
compared current major self-supervised architectures such as
BYOL [11], MoCo [12], SimCLR [13], SwaV [14], and Sim-
Siam [15]. Each model has an unique method of mapping
images into the latent space, which could potentially provide
diverse and unique representation of the images.

BYOL [11] uniquely avoids the use of negative pairs and
instead relies on two neural networks that learn from each
other by minimizing the distance between their representa-
tions of two augmented views of the same image.

MoCo [12] stands out for its use of a dynamic dictionary
of encoded representations and a momentum-updated encoder
to maintain consistency over time, facilitating effective con-
trastive learning even with a large number of negative sam-
ples.

SimCLR [13] distinguishes itself with its simple yet ef-
fective framework that uses a large batch size and enhanced
data augmentation to learn powerful representations by max-
imizing agreement between differently augmented views of
the same data.

SwAV [14] uniquely clusters the data while enforcing
consistency between cluster assignments of different aug-
mented views of the same image, using a technique called
”swapped prediction” that improves representation by com-
paring cluster assignments instead of direct feature vectors.

SimSiam [15] is unique in its approach of using a siamese
network architecture with no negative pairs and preventing
collapse through stop-gradient operations, focusing solely on
similarity maximization between two augmented views of the
same image.

Each model underwent 200 epochs of training with a
batch size of 128, with default learning rates specified in the
related papers, and maintaining a standardized output size of
200 units. These models were initialized randomly, bypassing
the use of ImageNet weights, thus assessing the framework’s
ability to discern melanoma from nevus without prior knowl-
edge. Apart from these, all other hyperparameters were kept
the same as described in their related article.

2.4. Set-Transformer

Set-Transformers are well-suited for our task of comparing
skin lesions due to their efficiency in handling unordered data
sets. The original paper [8] introduces operations like SAB
(Set-Attention Block), ISAB (Induced SAB), Multihead At-
tention Block (MAB), and Pooling by Multihead Attention
(PMA), enabling permutation invariance and optimization of
computational complexity by using inducing points, thereby
efficiently processing unordered data while minimizing com-
putational costs. Our utilized Set-Transformer model adopts
an encoder-decoder structure, similar to original implemen-
tation. The encoder comprises two ISAB blocks, while the
decoder includes a PMA layer, two SAB blocks, and a final
dense layer. We set the hidden dimension to a size of 128 and
set 8 attention heads. During training, the Set-Transformer
processes each patient’s image list (represented as vectors),
generating context information vectors of size 20. These out-
puts are concatenated with the original input vectors and fed
into the final prediction layer. With a contextual output of
size 20, we ensure that the generated vectors represent useful
information for the prediction. Training spanned 200 epochs,
using cross-entropy loss, SGD optimizer and a learning rate of
0.001. To prevent overfitting, training stopped after 15 epochs
without validation AUC improvement. Each training step in-
volved 64 patients, with 20 random vectors selected per pa-
tient, surpassing the average of 16 lesions per patient found in
the ISIC 2020 dataset to ensure a more comprehensive repre-
sentation. For patients with fewer lesions, zero vectors were
used as padding. During validation and testing, patients with
excess images were processed multiple times through the net-
work for prediction. Leveraging Set-Transformers for skin le-
sion comparison introduces an innovative approach, harness-
ing the model’s ability to process unordered sets and derive
meaningful insights from images of skin lesions.

3. RESULTS

In this section, we conduct an extensive analysis of the out-
comes derived from our classification task.



Supervised Architecture AUC Balanced accuracy Sensitivity Specificity
Classification CNN 0.905± 0.01 0.707± 0.01 0.775± 0.06 0.705± 0.06

Set-Transformer (without residual) 0.801± 0.01 0.690± 0.02 0.798± 0.09 0.583 ± 0.12
ReSeT 0.924 ± 0.01 0.831 ± 0.02 0.874 ± 0.05 0.788 ± 0.09

Table 2. Test Set Classification Results. The comparison includes a basic classification CNN, a Set-Transformer trained on
the CNN’s features without residuals, and the performance of ReSeT on the CNN’s features.

Self-supervised Architecture AUC Balanced accuracy Sensitivity Specificity
BYOL 0.681 ± 0.01 0.635 ± 0.02 0.694 ± 0.04 0.576 ± 0.04
MoCo 0.768 ± 0.02 0.708 ± 0.02 0.730 ± 0.09 0.686 ± 0.06

SimCLR 0.764 ± 0.01 0.683 ± 0.02 0.780 ± 0.02 0.587 ± 0.02
SimSiam 0.748 ± 0.01 0.702 ± 0.01 0.849 ± 0.01 0.555 ± 0.02

SwaV 0.617 ± 0.01 0.569 ± 0.03 0.602 ± 0.16 0.536 ± 0.12

Table 3. Classification results on self-supervised encoders. Results of the classification task on the test set using self-
supervised architectures for CNN training.

For each architecture, we selected the model with high-
est AUC on the validation set, and utilized a grid search
methodology on the validation set to find the optimal clas-
sification threshold used for the computation of balanced
accuracy, sensitivity, and specificity metrics. We kept the
most suitable threshold for generating predictions from the
probabilities. These optimized models, along with their re-
spective thresholds, were subsequently utilized for the final
prediction on the test set. Moreover, to comprehensively
evaluate the performance of the architectures, we trained five
distinct Set-Transformers for each architecture and computed
their average and standard deviation. This method enabled us
to analyze and compare the stability and average performance
across architectures for each metric.

3.1. Supervised encoder

We begin by evaluating the performance of the supervised ap-
proach. This involves training a classification ConvNet on the
binary task of detecting melanoma and nevus and use it as the
encoder of the ReSeT architecture. Results are detailed in Ta-
ble 2. The conventional classification CNN performed well,
achieving an AUC (Area Under the Curve) of 0.905, aligning
with expected performance for this task. Interestingly, feed-
ing features directly into a classical Set-Transformer led to a
decrease in performance, yielding an AUC of 0.801. This de-
cline might arise from challenges in associating each output
with its corresponding image input. However, our model Re-
SeT, which integrates skip-connections with the CNN’s fea-
tures, demonstrated a significant performance enhancement,
achieving an AUC of 0.924. This result show the impor-
tance of using residual layer in this context, making the Set-
Transformer learn how to predict each image along with the
additional contextual information.

These findings highlight the potential of utilizing Set-
Transformers in dermatological diagnosis, presenting a promis-

ing path for clinicians and researchers. The superior perfor-
mance of the combined approach highlights the limitations
of employing classical Transformers and Set-Transformers
directly without tailoring them to the specific task at hand.

3.2. Self-supervised encoders

Fig. 2. Average ROC curves of the Set-Transformer trained
on different encoders’ features.

The outcomes derived from utilizing features extracted
by self-supervised models are summarized in Table 3, ac-
companied by the corresponding receiver operating char-
acteristic (ROC) curves depicted in Figure 2. Beyond all
self-supervised architectures, MoCo consistently outperform
other models, exhibiting an AUC of 0.768 and a balanced
accuracy of 0.708, which correlate with its performances in
other tasks in the literature. Moreover, it is very likely that
the use of the dictionary lookup within MoCo enables the



model to grasp the different subcategories of skin lesions
that exist in dermatology, leading to better performances. In
contrast, alternative models show slightly lower performance,
with their AUC ranging between 0.62 and 0.76. Results of
self-supervised encoders are undoubtedly lower than super-
vised ones; however, it is notable that these architectures still
achieve decent accuracy despite generating embeddings with-
out access to any annotations. These results underscore the
robustness and efficacy of MoCo’s features, showcasing the
potential of self-supervised approaches in generating useful
features for image comparison. It is noteworthy that these
encoders had no access to ground truth labels during training,
emphasizing the significant achievement of these results.

4. CONCLUSION

We have introduced a novel framework for melanoma de-
tection that harnesses the power of Set-Transformers along-
side skip-connections and supervised and self-supervised en-
coders. Our approach has proven effective in efficiently com-
puting robust features and identifying melanomas, resulting
in a notable increase in classification model accuracy. These
findings are of significant importance in the field of derma-
tology and computer-aided diagnosis, paving the way for fur-
ther research on the Ugly-Duckling Sign. Coupled with re-
cent advances in screening techniques and full-body imaging,
research on image comparison is likely to have a significant
positive impact on clinical settings, providing dermatologists
with more insights when diagnosing skin lesions.

The features acquired through self-supervised models
have the potential to significantly enhance prediction inter-
pretability and enable thorough visualization of latent spaces,
eliminating the need for the original classification task. These
capabilities can empower dermatologists in their clinical prac-
tice, including visualization techniques that could be applied
in clinical settings. We leave this path of research for further
work, where some methods have already managed to obtain
good results on images of faces [16].

Moreover, our approach exhibits broad applicability be-
yond dermatology, extending to a wide range of diseases and
scenarios that require comparing multiple instances and pre-
dicting them. Its adaptability in cases where obtaining anno-
tations is challenging or prone to noise positions it as a versa-
tile and potent tool within the broader medical and healthcare
domains.
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